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Computational Chemistry 
Challenges

Larger molecules
Nano structures
Molecular electronics
Polymer properties
Biological molecules

More emphasis on processes
Reaction description rather than 
transition probabilities
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Computational challenges

Energies
Gradients
Geometry search

Equilibrium configuration
Transition states

Vibrational frequencies
Excited electronic states
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CCSD(T)

Luciferin(C11H8O3S2N2) 
RHF
C1 symmetry
Basis = aug-cc-pvdz 
(494 bf)
Ncorr

occ = 46

Sucrose (C12H22O11)
RHF
C1 symmetry
Basis  = 6-311G** 
(546 bf)
=68
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ACES III software

Developed under CHSSI CBD-03
Parallel for shared and distributed 
memory
Capabilities

Hartree-Fock (RHF, UHF)
MBPT(2) energy, gradient, hessian
CCSD(T) energy and gradient 
(DROPMO)
EOM-CC excited state energies
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Luciferin CCSD scaling
min per iter; 12 iterations; two versions;
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Luciferin CCSD(T)

CCSD on 128 processors
One iteration: 23 min
Total 12 iterations: 275 min

(T)
Hardest 8 occupied orbitals: 420 min 
on 128 processors
Total 48 correlated orbitals: 420 min 
on 768 processors
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Sucrose CCSD scaling
min per iteration
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Succrose CCSD super linear scaling

CCSD iteration
32 processors 909 min
512 processors 24 min, ideal: 57 min
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ArN Cluster Benchmarks(Performance)

Specifications
N=6
UHF
C1 symmetry
Basis = aug-cc-pvtz 
(300bf)
Ncorr

occ = 54
R = 5 bohr

Methods
MBPT(2) gradient
CCSD gradient
CCSD(T) (core 
dropped)
MBPT(2) Hessian 
(RHF)
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Ar6 UHF MBPT(2) gradient scaling
min per iteration; 54 corr occ alpha
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Ar6 UHF CCSD gradient scaling
min per iteration; 54 corr occ alpha
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Ar6 UHF CCSD(T) scaling
min per iteration; 24 corr occ alpha
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Ar6 MBPT(2) Hessian Results

Asymmetric 
evaluation 
algorithm
V*d2V/dpdq 
dV/dp
dV/dq
dV/dp*dV/dq

Number of Hessian 
elements = 324/2

Number of 
processors = 128
T=381 minutes
155 sec / pert p
330 sec / pert q 
16 sec / element
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Benchmarks website

From workshop on “Parallelization 
of Coupled Cluster Methods” 

Feb 23-24, 2008 St. Simons Island, 
Georgia at 2008 Sanibel Symposium

http://www.qtp.ufl.edu/PCCworksho
p/PCCbenchmarks.html
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A single CPU computer

Basic data item: 64 bit number
High level language: Fortran, C

c = a + b

Assembly language
ADD dest,src
ADD is an operation code
dest and src are registers
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The ACES III machine

Basic data item: data block 10,000 
64 bit numbers -> super number
High level language: being 
developed
Assembly language: SIAL super 
instruction assembly language

R(I,J,K,L) += V(I,J,C,D) * T(C,D,K,L)
xaces3 -> super instruction 
processor
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Coarse grain parallelism

Memory super instruction 
GET block

can be from
Local node RAM
Other node RAM

Only difference is execution time!
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Fine grain parallelism

Compute super instruction
* (contractions)
compute_integrals

can use multiple cores and 
accelerators like GPU
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Execution flow

ACES III

algo.sio

SIAL compiler

algo.sial

input
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Distributed data flow

N worker tasks each with local RAM
Data distributed in RAM of workers

AO-based: direct use of integrals
MO-based: use transformed integrals

Array blocks are spread over all 
workers
Workers compute integrals when 
integral instruction is called
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Disk resident data flow

M server tasks
have access to local or global disk 
storage
accept, store and retrieve blocks
also compute integrals when asked

Data served to and from disk
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New developments

Develop higher level programming 
language
Data staging

Huge served array
Copy section in distributed array
Work efficiently on distributed array

Similar to BLAS-3 management of 
cache
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ACES III is ready

Tackle problems larger than ever
We are now working on getting 
some benchmark results on 1,000 
and 2,000 processors

The problem is getting quick access to 
1,000 and 2,000 processors to tune for 
good performance
Running ACES III is easy 
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