
Jun 29, 06 ACES 3 1

ACES 3: Efficient Parallel 
Implementation of MBPT(2) and 
CCSD Energy, Gradient and 
Hessian Calculations

Erik Deumens
AcesQC and University of Florida
Jun 29, 2006



Jun 29, 06 ACES 3 2

Outline of the talk

What does ACES 3 do?
Computational chemistry

How does it work in parallel?
Computer science and engineering

Some examples
Performance analysis



Jun 29, 06 ACES 3 3

What does ACES 3 do?

Computational chemistry
Dynamics and structure of molecules
Atomic nuclei move slower
Electrons are fast like mosquitoes 
buzzing around a hiker



Jun 29, 06 ACES 3 4

H H

H

C



Jun 29, 06 ACES 3 5

Computational chemistry

Potential Energy Surfaces
Minima for stable molecular states
Saddle points for transition states
Reaction paths

Need to compute
Energy
Gradient
Hessian



Jun 29, 06 ACES 3 6

Serial to parallel

ACES 2
Serial code
Developed since 1990

ACES 3
Developed under CHSSI CBD-03
Parallel code for compute intense 
components

MBPT(2) energy, gradient, hessian
CCSD energy and gradient



Jun 29, 06 ACES 3 7

Outline of the talk

What does ACES 3 do?
Computational chemistry

How does it work in parallel?
Computer science and engineering

Some examples
Performance analysis



Jun 29, 06 ACES 3 8

Why is this problem hard?

CCSD calculations are compute and 
data intensive
Large number of T amplitudes
Large numbers of integrals

to be kept in RAM, or on disk: stored 
method
to be computed multiple times: direct 
method



Jun 29, 06 ACES 3 9

Computer Science and Engineering

Need sophisticated design
Exploit parallelism
Feasible to write and debug
Possible to tune on multiple 
architectures

Distributed memory
Ratio of CPU speed vs. communication speed

Shared or NUMA memory

Easy to maintain



Jun 29, 06 ACES 3 10

Traditional Design

control

compute

communication

disk input output

hardware

code



Jun 29, 06 ACES 3 11

Traditional Design

Assumptions
Data access latency and bandwidth
Computation intertwined with 
communication
Size for data that can be replicated
Hardware characteristics must fall in 
certain ranges to reach performance 
goals



Jun 29, 06 ACES 3 12

Traditional Design

Consequences
Detailed analysis by programmer
Match data flow with work flow
Manage communication deep in code



Jun 29, 06 ACES 3 13

ACES 3 Design

control

hardware

compute Communication disk I/O

code



Jun 29, 06 ACES 3 14

ACES 3 Design

Requirement
Allow flexibility to control separately 
at run-time:
1. Computation
2. Communication
3. Disk input and output



Jun 29, 06 ACES 3 15

ACES 3 Design

Principles
Define units of data

For movement and computation
Define basic operations on data units

All movement is asynchronous
Schedule operations and movement

Optimize hiding communication behind 
computation for every machine
Optimize data size to make its 
computation longer than its transportation



Jun 29, 06 ACES 3 16

Data organization: numbers

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44



Jun 29, 06 ACES 3 17

Data organization: blocks

T on node 1

T(1,1) T(1,2) T(2,1)

T on node 2

T(2,2) T(1,3) T(2,3)



Jun 29, 06 ACES 3 18

ACES 3 execution

ACES 3

algo.sio

SIAL compiler

algo.sial

input



Jun 29, 06 ACES 3 19

Parallel architecture

Distributed data in RAM of workers
AO direct use of integrals
MO use transformed integrals

N worker tasks each with 1 GB RAM
Array blocks are spread over all 
workers
Workers compute integrals when 
integral instruction is called



Jun 29, 06 ACES 3 20

Parallel architecture

Served data to and from disk
AO no transformation of integrals
MO use transformed integrals

N worker tasks and M server tasks
Workers are as before
Servers have disk cache and disk
Servers take and give blocks
Servers compute integrals when asked



Jun 29, 06 ACES 3 21

ACES 3 coding

Object oriented to the extreme
Write code in low level language for 
super instruction processor to 
obtain optimal performance

Fortran, C, C++
Non blocking MPI 
Asynchronous I/O



Jun 29, 06 ACES 3 22

ACES 3 coding

Write algorithm in high level super
instruction assembly language

Declare (block) arrays, (block) indices
DO - END DO construct
PARDO – END PARDO construct
Basic operations: add and multiply and 
contract
Each line maps to a few super
instructions



Jun 29, 06 ACES 3 23

Optimize and tune ACES 3

Optimize with traditional techniques
optimize the basic contraction 
operations by mapping them to DGEMM 
calls
create fast integral block code
optimize memory allocation by using 
multiple block stacks
optimize execution and data movement



Jun 29, 06 ACES 3 24

Outline of the talk

What does ACES 3 do?
Computational chemistry

How does it work in parallel?
Computer science and engineering

Some examples
Performance analysis



Jun 29, 06 ACES 3 25

Some tests

Spin unrestricted SCF and CCSD
H2O 115 functions, 5 occupied
CH2F2 116 functions 13 occupied
C6H4F2 140 functions 29 occupied
Ar4 200 functions 36 occupied
Ar6 300 functions 54 occupied
Ar10 500 functions 90 occupied



Jun 29, 06 ACES 3 26

Water

Distrib
AO

Distrib
MO

Served
AO

Served
MO

Serial
MO

159
1

1,977
6/2

158
1

2,307
2/2

829

3,022
1

3,500
8

3,330
1

12,258
2/2

3,257

Integral

transform

Total

w/o

SCF



Jun 29, 06 ACES 3 27

CH2F2

Distr
AO

Distr
MO

Served
AO

Served
MO

serial

323
1

5,204
4,879
3/1

298
1

1,745
1,904
1/1

1,201

12303
1

11,777
10,430
3/1

13,719
1

23,813
14,540
1/1

17,657

Integral

transform

Total

w/o 

SCF

Segment 25
Seqment 22



Jun 29, 06 ACES 3 28

C6H4F2

CCSD
MO

15,856
12
1.

7,743
32
.76

4,848
64
.61

CCSD
AO

35,278
8
1.

10,687
32
.82

6,294
64
.70

CCSD
Geom
3 steps

255,976
12
1.

211,564
16
.91

140,424
32
.68



Jun 29, 06 ACES 3 29

Machine SCF trans CCSD
1 iteration

IBM P4
shelton

313 s 4,242 s 16,363 s
4.5 h

Cray X1
diamond

582 s 6,452 s 19,601 s
5.4 h

Compaq
emerald

132 s 4,180 s 29,188 s
8.1 h

Ar6 54+246=300 bf on 64 processors



Jun 29, 06 ACES 3 30

Conclusion

New design and team work 
delivered
On time, within budget
New code is fast and flexible
New code provide new tool to do 
new chemistry that cannot be done 
without it…


	ACES 3: Efficient Parallel Implementation of MBPT(2) and CCSD Energy, Gradient and Hessian Calculations
	Outline of the talk
	What does ACES 3 do?
	Computational chemistry
	Serial to parallel
	Outline of the talk
	Why is this problem hard?
	Computer Science and Engineering
	Traditional Design
	Traditional Design
	Traditional Design
	ACES 3 Design
	ACES 3 Design
	ACES 3 Design
	Data organization: numbers
	Data organization: blocks
	ACES 3 execution
	Parallel architecture
	Parallel architecture
	ACES 3 coding
	ACES 3 coding
	Optimize and tune ACES 3
	Outline of the talk
	Some tests
	Water
	CH2F2
	C6H4F2
	Conclusion

