
Jun 26, 06 ACES 3 tutorial design 1

ACES 3 Tutorial: Efficient Parallel 
Implementation design

Erik Deumens
AcesQC and University of Florida

Jun 26, 2006



Jun 26, 06 ACES 3 tutorial design 2

A story

No new chemistry or physics:
build better tool to do new chemistry

New computer science and software 
engineering:

a design pattern

New paradigm of scientific activity:
work of a team of specialists



Jun 26, 06 ACES 3 tutorial design 3

ACES 2

Mature and complex code
Theoretical foundation

Coupled Cluster theory
Many developments from there:

Higher orders
Multi Reference
Equation of Motion
Simularity Transformation



Jun 26, 06 ACES 3 tutorial design 4

ACES 2

ACES 1 was created 1980
G. Purvis, G. Trucks, A. Salter, B. Laidig

ACES 2 was rewritten starting 1990
J. Stanton, J. Gauss, A. Perera, J. Watts, 
M. Nooijen, P. Szalay, S. Kucharski, M. 
Musial, W. Lauderdale, D. Bernholdt



Jun 26, 06 ACES 3 tutorial design 5

Roman times (1990-1991)

Two heroes, exquisite gladiators:
Jürgen Gauss
John Stanton

Living in a flat (Cray) world: fast CPU, 
fast RAM, fast disk (SSD)
Created ACES 2



Jun 26, 06 ACES 3 tutorial design 6

Dark Ages (1992-2002)

Still vision of a flat world:
Vectorization was made automatic
Parallelization remained hard
MPI emerged as standard

Several attempts to make parallel CCSD 
were partially successful
Heroes are skilled knights, like

Wojtek Cencek



Jun 26, 06 ACES 3 tutorial design 7

Renaissance (2003-)

Recognition that the world is not flat
Three heroes

Norbert Flocke
Victor Lotrich
Mark Ponton

With support team
Ajith Perera
Anthony Yau
Marshall Cory



Jun 26, 06 ACES 3 tutorial design 8

The problem to solve: CCSD

Coupled Cluster singles and doubles
Quantum mechanical description for 
electrons in molecules
Diagrammatic techniques for math
Example term: Rab

ij = ∑cd Vab
cd Tcd

ij

And many more…



Jun 26, 06 ACES 3 tutorial design 9

Why is this problem hard?

CCSD calculations are compute and 
data intensive
Large number of T amplitudes
Large numbers of integrals

to be kept in RAM, or on disk: stored 
method
to be computed multiple times: direct 
method



Jun 26, 06 ACES 3 tutorial design 10

History of Design Principles

Roman and Medieval design
Inflexible
Uniform architecture for flat world

Renaissance design
Dynamic
Component or object architecture can 
adapt to mountains



Jun 26, 06 ACES 3 tutorial design 11

Roman and Medieval Design

control

compute

communication

disk input output

hardware

code
gen



Jun 26, 06 ACES 3 tutorial design 12

Roman and Medieval Design

Assumptions
Data access latency and bandwidth
Computation intertwined with 
communication
Size for data that can be replicated
Hardware characteristics must fall in 
certain ranges to reach performance goals



Jun 26, 06 ACES 3 tutorial design 13

Roman and Medieval Design

Consequences
Detailed analysis by programmer
Match data flow with work flow
Manage communication deep in code



Jun 26, 06 ACES 3 tutorial design 14

Renaissance Design

control

hardware

compute Communication disk I/O

code
gen



Jun 26, 06 ACES 3 tutorial design 15

Renaissance Design

Requirement
Allow flexibility to control separately at 
run-time:
1. Computation
2. Communication
3. Disk input and output



Jun 26, 06 ACES 3 tutorial design 16

Renaissance Design

Principles
Define units of data

For movement and computation

Define basic operations on data units
All movement is asynchronous

Schedule operations and movement
Optimize hiding communication behind computation for 
every machine
Optimize data size to make its computation longer than 
its transportation



Jun 26, 06 ACES 3 tutorial design 17

VAX 11/780 analogy

Define data element: super number
A block of T or V is 10 KByte

Define set of basic super operations
Get block from and put on disk
Get block from and put on remote RAM
Contract block of T with block of V in one 
of a few ways



Jun 26, 06 ACES 3 tutorial design 18

VAX 11/780 analogy

Reserve space in local RAM for holding 
blocks (super stack)
Schedule all operations asynchronously

Issue get of data using registers for 
compute instruction after next
Issue put of result from previous compute 
instruction
Issue compute instructions on ready data



Jun 26, 06 ACES 3 tutorial design 19

VAX 11/780 analogy

Every operation takes some time
Super program controls computation

schedule to keep all CPUs busy
manage outstanding communication and 
IO requests

Super instruction processor executes 
instructions, is MIMD MPI program



Jun 26, 06 ACES 3 tutorial design 20

Benefits

Each super instruction can optimize use 
of

superscalar microprocessor architecture
multi-level caches
vector processors
SMP nodes
message passing mechanisms
disk input and output scheduling



Jun 26, 06 ACES 3 tutorial design 21

Renaissance coding

Object oriented to the extreme
Write code in low level language for 
super instruction processor to obtain 
optimal performance

Fortran, C, C++
Non blocking MPI 
Asynchronous I/O



Jun 26, 06 ACES 3 tutorial design 22

Renaissance coding

Write algorithm in high level super
instruction assembly language

Declare (block) arrays, (block) indices
DO - END DO construct
PARDO – END PARDO construct
Basic operations: add and multiply and 
contract
Each line maps to a few super instructions



Jun 26, 06 ACES 3 tutorial design 23

Data organization: numbers

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44



Jun 26, 06 ACES 3 tutorial design 24

Data organization: blocks

T on node 1

T(1,1) T(1,2) T(2,1)

T on node 2

T(2,2) T(1,3) T(2,3)



Jun 26, 06 ACES 3 tutorial design 25

ACES 3 = Parallel ACES 2

Distributed data in RAM of workers
AO direct use of integrals
MO use transformed integrals

N worker tasks each with 1 GB RAM
Array blocks are spread over all workers
Workers compute integrals when 
integral instruction is called



Jun 26, 06 ACES 3 tutorial design 26

ACES 3 = Parallel ACES 2

Served data to and from disk
AO no transformation of integrals
MO use transformed integrals

N worker tasks and M server tasks
Workers are as before
Servers have disk cache and disk
Servers take and give blocks
Servers compute integrals when asked



Jun 26, 06 ACES 3 tutorial design 27

Build Code

Writing SIAL is simpler than writing MPI 
in Dark Ages: focus on algorithm

Hero: Victor

Writing SIP is simpler too: forget about 
algorithm, focus on basic operations

Heroes: Mark, Norbert



Jun 26, 06 ACES 3 tutorial design 28

Optimize SIP

Optimize with traditional techniques:
Anthony optimized the basic contraction 
operations by mapping them to DGEMM 
calls
Norbert created fast integral block code
Mark optimized memory allocation by using 
multiple block stacks
Mark optimized execution and data 
movement



Jun 26, 06 ACES 3 tutorial design 29

Optimize SIAL

Victor quickly wrote very different 
implementation of basic algorithms 
using different strategies:

Which intermediate blocks to compute?
Store intermediate blocks or compute them 
repeatedly? How many times?
No intermediates are computed as 
distributed arrays -> less synchronization



Jun 26, 06 ACES 3 tutorial design 30

Some tests

Do SCF and CCSD
H2O 115 functions 5 occupied
CH2F2 116 functions 13 occupied
DMS 127 functions 17 occupied
C6H4F2 140 functions 29 occupied
Ar4 200 functions 36 occupied
Ar6 300 functions 54 occupied
Ar10 500 functions 90 occupied



Jun 26, 06 ACES 3 tutorial design 31

Water

Distrib
AO

Distrib
MO

Served
AO

Served
MO

Serial
MO

159
1

1,977
6/2

158
1

2,307
2/2

829

3,022
1

3,500
8

3,330
1

12,258
2/2

3,257

Integral

transform

Total

w/o

SCF



Jun 26, 06 ACES 3 tutorial design 32

DMS
Distr
AO

Distr
MO

Served
AO

Served
MO

serial

309
4/2

1,889
12/4

659
2/2

2,771
2/2

4,080

6,341
6

6,049
15

26,575
2/2

16,259
2/2

36,566

Integral

transform

Total

w/o

SCF



Jun 26, 06 ACES 3 tutorial design 33

C6H4F2
CCSD
MO

15,856
12
1.

7,743
32
.76

4,848
64
.61

CCSD
AO

35,278
8
1.

10,687
32
.82

6,294
64
.70

CCSD
Geom
3 steps

255,976
12
1.

211,564
16
.91

140,424
32
.68



Jun 26, 06 ACES 3 tutorial design 34

Machine SCF trans CCSD
1 iteration

IBM P4
shelton

82 s 776 s 1,431 s
.4 h

Compaq
emerald

53 s 2,957 s 6,997 s
1.9 h

Cray X1
diamond

4,535 s
X1 busy

26,871 s
X1 busy

30 h
X1 busy

Ar4 36+164=200 bf on 64 processors



Jun 26, 06 ACES 3 tutorial design 35

Machine SCF trans CCSD
1 iteration

IBM P4
shelton

313 s 4,242 s 16,363 s
4.5 h

Cray X1
diamond

582 s 6,452 s 19,601 s
5.4 h

Compaq
emerald

132 s 4,180 s 29,188 s
8.1 h

Ar6 54+246=300 bf on 64 processors



Jun 26, 06 ACES 3 tutorial design 36

Basis
functions

SCF trans CCSD
1 iteration

Ar4 200
36+164

4,535 s
X1 busy

26,871 s
X1 busy

30 h
X1 busy

Ar6 300
54+247

582 s 6,452 s 5.4 h

Ar10 500
90+410

2,810 s 32,855 s 77 h

Cray X1 on 64 processors



Jun 26, 06 ACES 3 tutorial design 37

Comments

IBM and Compaq are distributed memory 
systems with a fast switch; the Compaq CPUs 
are a bit faster; the IBM switch is a bit faster
Cray has a shared memory architecture and 
uses vector processors and has slow scalar 
performance, activity of other jobs, especially 
I/O can severely impact wall clock time
CCSD scaling n4o2 .



Jun 26, 06 ACES 3 tutorial design 38

Computer Science: Design 
Pattern

Identify:
atomic data item, big enough
atomic instructions to operate on these 
data items as a whole

Reading, receiving, writing, sending 
data items becomes clear
Optimal scheduling of operations 
becomes possible



Jun 26, 06 ACES 3 tutorial design 39

Computer Science: Design 
Pattern

Programmer
Can operate on entire data item
Work on parts of a data item is a bit super
operation

Too many bit operations, means the 
data item concept is not chosen well



Jun 26, 06 ACES 3 tutorial design 40

Computer Science: Design 
Pattern

Optimization of SIP:
SIAL programmer cannot break the rules
SIP programmer can optimize large SIAL 
programs (30,000 lines) with simple 
changes inside a few instructions of 
algorithms or data structures
SIP optimization introduces no errors

Good performance obtained



Jun 26, 06 ACES 3 tutorial design 41

Understanding ACES 3 runs

Given: molecule and computer
Make estimate of space needed
Choose algorithm
Choose segment size



Jun 26, 06 ACES 3 tutorial design 42

Rule 1

Every run needs servers for
DIIS
Integral transformation



Jun 26, 06 ACES 3 tutorial design 43

Rule 2

Run distributed or served?
It is always better, if you can, to run 
distributed

CCSD
Lambda
One-grad

It is always better to run served
Two-grad



Jun 26, 06 ACES 3 tutorial design 44

Rule 3

Big molecules on small computers need 
served version of

CCSD
Lambda
One-grad



Jun 26, 06 ACES 3 tutorial design 45

Estimating space need

Distributed CCSD needs several 
versions of T

3 in RAM: 3 v2o2

DIIS histories on disk (served)

That is all



Jun 26, 06 ACES 3 tutorial design 46

Estimating space need

Integral transformation needs most 
space on disk (served), if that step 
passes the memory test, everything will 
pass



Jun 26, 06 ACES 3 tutorial design 47

ACES 3 space test

ACES 3 does memory estimate at 
beginning and will end immediately on 
error



Jun 26, 06 ACES 3 tutorial design 48

Estimating the work balance

The ratio of worker tasks and server 
tasks

Too few server makes everybody wait
Too many servers wastes CPUs that could 
be workers
Good ratio 7:1

128 CPUs = 112 workers + 16 servers



Jun 26, 06 ACES 3 tutorial design 49

Estimating the segment size

Segment: piece of basis set that 
determines the basic block

AO segments
must fall on shell boundaries or integral 
computation wastes effort

MO segments
can be whatever you want
Make nr of occupied and unoccupied segments 
the same for better load balancing



Jun 26, 06 ACES 3 tutorial design 50

Estimating the segment size

Choice can strongly impact run time
Choice depends on hardware

Ratio of CPU speed and communication 
speed can affect the choice



Jun 26, 06 ACES 3 tutorial design 51

CH2F2

Distr
AO

Distr
MO

Served
AO

Served
MO

serial

323
1

5,204
4,879
3/1

298
1

1,745
1,904
1/1

1,201

12,303
1

11,777
10,430
3/1

13,719
1

23,813
14,540
1/1

17,657

Integral

transform

Total

w/o 

SCF

Segment 25
Seqment 22


	ACES 3 Tutorial: Efficient Parallel Implementation design
	A story
	ACES 2
	ACES 2
	Roman times (1990-1991)
	Dark Ages (1992-2002)
	Renaissance (2003-)
	The problem to solve: CCSD
	Why is this problem hard?
	History of Design Principles
	Roman and Medieval Design
	Roman and Medieval Design
	Roman and Medieval Design
	Renaissance Design
	Renaissance Design
	Renaissance Design
	VAX 11/780 analogy
	VAX 11/780 analogy
	VAX 11/780 analogy
	Benefits
	Renaissance coding
	Renaissance coding
	Data organization: numbers
	Data organization: blocks
	ACES 3 = Parallel ACES 2
	ACES 3 = Parallel ACES 2
	Build Code
	Optimize SIP
	Optimize SIAL
	Some tests
	Water
	DMS
	C6H4F2
	Comments
	Computer Science: Design Pattern
	Computer Science: Design Pattern
	Computer Science: Design Pattern
	Understanding ACES 3 runs
	Rule 1
	Rule 2
	Rule 3
	Estimating space need
	Estimating space need
	ACES 3 space test
	Estimating the work balance
	Estimating the segment size
	Estimating the segment size
	CH2F2

